wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a triangle ABC, if tanA:tanB:tanC=1:2:3 then a2:b2:c2=

A
5:8:9
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
5:8:12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3:5:8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
5:8:10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 5:8:9
Given: tanA:tanB:tanC=1:2:3
tanA1=tanB2=tanC3=k
tanA=tanA
6k=6k3
k(1k2)=0
k0 and k2=1
k=1
tanA=1,tanB=2,tanC=3
1cotA=1,1cotB=2,1cotC=3
or cotA=1,cotB=12,cotC=13
cot2A=1,cot2B=14,cot2C=19
Add 1 to both sides,we get
1+cot2A=2,1+cot2B=1+14=54,1+cot2C=1+19=109
We know that csc2θ=1+cot2θ
csc2A=2
csc2B=54
csc2C=109
sin2A=12,sin2B=45,sin2C=910
Using sine rule, we have
a2:b2:c2=12:45:910
=5:8:9 (on simplification)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon