In a △ABC, let a,b and c denote the lengths of sides opposite to vertices A,B and C respectively. If a=7,b=3,c=5 and ab(tanB2+tanC2)(tanA2+tanC2)+bc(tanA2+tanC2)(tanA2+tanB2)+ac(tanB2+tanC2)(tanA2+tanB2)
equals k, then the value of √k+12 is
Open in App
Solution
As we know, tanA2tanB2+tanB2tanC2+tanC2tanA2=1 ab(tanB2+tanC2)(tanA2+tanC2)=abtanA2tanC2+tanB2tanC2+tanB2tanA2+tan2C2=ab1+tan2C2=s(s−c)⎛⎝∵cosC2=√s(s−c)ab⎞⎠
Similarly, bc(tanA2+tanC2)(tanA2+tanB2)=s(s−a)
and ac(tanB2+tanC2)(tanA2+tanB2)=s(s−b)
Now, on adding s(s−c)+s(s−a)+s(s−b)=3s2−s(a+b+c)=3s2−2s2=s2=(7.5)2