In a triangle ABC, let AB=√23,BC=3 and CA=4. Then the value of cotA+cotCcotB is
Open in App
Solution
With standard notations given : c=√23,a=3,b=4
Now, cotA+cotCcotB =cosAsinA+cosCsinCcosBsinB =b2+c2−a22bc⋅sinA+a2+b2−c22ab⋅sinCc2+a2−b22ac⋅sinB =b2+c2−a24Δ+a2+b2−c24Δc2+a2−b24Δ =2b2a2+c2−b2 =329+23−16 =2