In a triangle ABC, Let , ∠C=π2, if r is the inradius and R is the circumradius of the triangle ABC, then 2(r+R) equals
c +a
a + b + c
a + b
b + c
Given, ∠C=π2∵csinC=2R⇒2R=cand r=(s−c)tanC2=s−c∴2r+2R=2s−2c+c⇒2(r+R)=a+b