In a \triangle ABC, P, and Q are respectively, the mid points of AB and BC and R is the mid point of AP. Prove that
(i)ar(△PBQ)=ar(△ARC)(ii)ar(PRQ)=12ar(△ARC)(iii)ar(△RQc)=38ar(△ABC)
Construction: Join AQ, PC.
Proof : ∴ CR is the median of △APC∴ar(△CRA)=ar(△CRP)=12ar(△ACP)
Similarly, P is the median of △ABC△ar(△CAP)=ar(△CPB)ar(△ACR)=12ar(△CPB)
Again PQ is the median of △PBC,∴ar(△CPB)=2ar(△PBQ)
(ii)
Since QP and QR are the medians of \triangle QAB and \triangle QAP respectively.
∴ar(△QAP)=ar(△QBP)andar(△QAP)=2ar
From (vi) and (vii \\
ar (△PRQ)=12ar(△PBQ)
(iii) Since Cr is a median of △CAP∴ar(△ARC)=12ar(△CAP)=12[12ar(△ABC)]=14ar(△ABC)
Since RQ is a median of △RBCar(△RQC)=12ar(△RBC)
=12[ar(△ABC)−ar(△ARC)]=12[ar(triangleABC)−14ar(△ABC)]=12[34ar(△ABC)]=38ar(△ABC)