In a triangle ABC, points D and E are taken on side BC such that BD=DE=EC. If ∠ADE=∠AED=θ, then
Δ ADE is
isosceles
Δ ABC is isosceles, B=C
tanθ=APDP=(a2)tanB(a6)=3tanB=3tanC
tanA=tan(180o−2B)=−tan2B=2tanBtan2B−1
=6tanθtan2θ−9
Since it is an isosceles triangle, cot(A2)=APBP=tanB=13tanθ⇒9cot2(A2)=tan2θ