tanAtanB=c2+a2−b2c2+b2−a2
c2+a2−b22ac=cosB
c2+b2−a22bc=cosA
c2+a2−b22abcc2+b2−a22abc=cosBbcosAa
=cosBb×acosA
=2RsinA2RsinBcosBcosA
=tanAtanB
Hence proved.
In a triangle ABC, 2ca sinA−B+C2 is equal to