wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a triangle ABC, prove that
(i) cotA2cotB2=(ba)sΔ
(ii) (b+c)sinA2=acosBC2
(iii) bccos2A2+cacos2B2+abcos2C2=s2

Open in App
Solution

(i) cotA2cotB2=s(sa)Δs(sb)Δ=sΔ(sas+b)=s(ba)Δ
(ii) As bsinB=csinC=2R
(b+c)sinA2=2R(sinB+sinC)sinA2
=2R(2sin(B+C2)cos(BC2))sinA2=4RcosA2cos(BC2)sinA2=2RsinA×cos(BC2)
=acos(BC2)
(iii) bccos2A2=bc×s(sa)bc
s(sa+sb+sc)
s(3s2s)=s2.

1131062_1207937_ans_b41cfdfbfdf34280b2ae1428129f9f98.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cosine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon