We have r1=△s−a
r2=△s−b
and r3=△s−c
substituting the values of r1,r2,r3 in the equation we get
(b−cr1)+(c−ar2)+(a−br3)
=⎛⎜
⎜
⎜⎝b−c△s−a⎞⎟
⎟
⎟⎠+⎛⎜
⎜
⎜⎝c−a△s−b⎞⎟
⎟
⎟⎠+⎛⎜
⎜
⎜⎝a−b△s−c⎞⎟
⎟
⎟⎠
=(b−c△)(s−a)+(c−a△)(s−b)+(a−b△)(s−c)
=1△[(b−c)(s−a)+(c−a)(s−b)+(a−b)(s−c)]
=1△[s(b−c+c−a+a−b)−a(b−c)−b(c−a)−c(a−b)]
=0 (on simplification)