L.H.S
=cotAcotB+cotBcotC+cotCcotA
=1tanAtanB+1tanBtanC+1tanCtanA
=1tanAtanB+1tanBtanC+1tanCtanA
=tanA+tanB+tanCtanAtanBtanC …….. (1)
We know that
A+B+C=π
A+B=π−C
On taking tan both sides, we get
tan(A+B)=tan(π−C)
tanA+tanB1−tanAtanB=−tanC
tanA+tanB=−tanC+tanAtanBtanC
tanA+tanB+tanC=tanAtanBtanC
From equation (1), we get
=1
R.H.S
Hence. proved.