In a △ABC, prove that cos2A+cos2(A+π3)+cos2(A−π3)=32
We have
LHS = cos2A+cos2(A+π3)+cos2(A−π3)
=12(1+cos2A)+12{1+cos(2A+2π3)}+12{1+cos(2A−2π3)}
=32+12cos2A+12{cos(2A+2π3)+cos(2A−2π3)}
=32+12cos2A+cos2A cos2π3 [∵cos(A+B)+cos(A−B)=2cosA cosB]
=32+12cos2A−12cos2A[∵cos2π3=−12]
=32=RHS