In a △ABC,(r1+r3)√rr2r1r3 is equivalent to
(r1+r3)√rr2r1r3=(Δs−a+Δs−c)⋅√Δ2s(s−b)⋅(s−a)(s−c)Δ2
=Δ[2s−a−c√(s−a)(s−c)]⋅1s(s−b)=ΔbΔ=b
In a △ABC,rr2+r1r3=