In a triangle ABC,r2+r21+r22+r23+a2+b2+c2 is equal to (where r is inradius and r1,r2.r3 are exradii a,b,c are the sides of ā³ABC)
A
2R2
No worries! Weāve got your back. Try BYJUāS free classes today!
B
4R2
No worries! Weāve got your back. Try BYJUāS free classes today!
C
8R2
No worries! Weāve got your back. Try BYJUāS free classes today!
D
16R2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is B16R2 ∵(r1+r2+r3−r)2=r21+r22+r23+r2+2(r1r2+r2r3+r3r1)−2r(r1+r2+r3) ⇒(4R)2=r21+r22+r23+r2+2s2−2[(s−a)(s−b)+(s−b)(s−c)+(s−c)(s−a)] ⇒16R2=r21+r22+r23+r2+2s2−2[3s2−2s(a+b+c)+ab+bc+ca] Since a+b+c=2s we have ⇒16R2=r21+r22+r23+r2+2s2−6s2+4s(2s)−2(ab+bc+ca) ⇒16R2=r21+r22+r23+r2−2(ab+bc+ca)+4s2 ⇒16R2=r21+r22+r23+r2+(a+b+c)2−2(ab+bc+ca) ⇒16R2=r21+r22+r23+r2+a2+b2+c2 Hence r21+r22+r23+r2+a2+b2+c2=16R2