In a △ABC, right anged at B, if tan A = 1√3 , find the value of
We know that
tan A = BCAB=1√3
∴ BC : AB = 1 : √3
Let BC = k and AB = √3k
Then, AC = √AB2+BC2 ............ (Phythagoras theorm)
= √(√3k)2+(k)2 = √3k2+k2
= √4k2 = 2k
Now, sin A = BCAC=k2k=12
cos A = ABAC=√3k2k=√32
sin C = ABAC=√3k2k=√32
and cos C = BCAC=BCAC=k2k=12
(i) sin A cos C + cos A sin C = 12.12+√32.√32=14+34=1
(ii) cos A cos C - sin A sin C = √32.12−12.√32 = 0