In a △ABC,rr2+r1r3=
rr2+r1r3=Δs⋅Δs−b+Δs−a⋅Δs−c
=Δ2[(s−a)(s−c)+s(s−b)]s(s−a)(s−b)(s−c)
=Δ2[2s2−s(a+b+c)+ac]Δ2
=2s2−2s2+ac=ac
In a △ABC,(r1+r3)√rr2r1r3 is equivalent to
Question 10
In ΔABC,
a) AB + BC > AC b) AB + BC < AC c) AB + AC < BC d) AC + BC < AB
In ΔABC, if ∠C>∠B, then(a) BC>AC (b) AB>AC (c) AB<AC (d) BC<AC