In a △ABC, sides a,b,c are in A.P and 21!9!+23!7!+15!5!=8a(2b)!, then the maximum value of tanAtanB is equal to
A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
13
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
15
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C13 21!9!+23!7!+15!5!=8a(2b)! →11!9!+13!7!+15!5!+11!9!+13!7!=8a(2b)! ⇒110!(10!1!9!+10!3!7!+10!5!5!+10!1!9!)=8a(2b)! ⇒110!(29)=8a(2b)! ⇒110!(29)=23a(2b)! Equating the like terms, we get ⇒3a=9 and 2b=10 ∴a=3 and b=5 Also, 2b=a+c⇒10=3+c⇒c=7 ∴a=3,b=5 and c=7 ∵tanA+tanB2≥√tanAtanB .............(1) Also,cosC=a2+b2−c22ab=9+25−4930=−12 which is in second quadrant. ∴C=180−60=120degrees. and ∠A,∠B<600 (given) tanA+tanB+tanC=tanAtanBtanC ⇒tanA+tanB−√3=tanAtanB(−√3) ⇒tanA+tanB=√3(1−tanAtanB) ...............(2) Also, tanA+tanB>0 ⇒√3(1−tanAtanB)>0 ⇒1−tanAtanB>0 ⇒tanAtanB<1 ...............(3) From (1) and (2) we have √3(1−tanAtanB)2≥√tanAtanB Let tanAtanB=λ ∴√3(1−λ)≥2√λ Squaring both sides we get ⇒3(1−λ)2≥4λ ⇒3λ2−10λ+3≥0 ⇒(3λ−1)(λ−3)≥0 ∵λ−3<0 ∴3λ−1≤0 ⇒λ≤13 Hence, tanAtanB≤13