The correct option is C √3
A+B+C=π
⇒A2+B2=π2−C2
⇒cot(A2+B2)=cot(π2−C2)
⇒cotA2cotB2−1cotA2+cotB2=tanC2=1cotC2
⇒cotA2cotB2cotC2=cotA2+cotB2+cotC2 ⋯(1)
But tanA2,tanB2,tanC2 are in H.P.
∴cotA2,cotB2,cotC2 are in A.P.
⇒cotA2+cotC2=2cotB2
Hence, Eq.(1) becomes
cotA2cotB2cotC2=3cotB2
⇒cotA2cotC2=3
cotA2+cotC22≥√cotA2cotC2
⇒cotB2≥√3
Thus, the minimum value of cotB2 is √3