Given : A+B+C=π
We know that,
tanA+tanB+tanC=tanAtanBtanC⇒32+3k=(2k+1)(4k+1)8⇒3(2k+1)2=8k2+6k+18⇒12(2k+1)=(2k+1)(4k+1)⇒(2k+1)[4k+1−12]=0⇒(2k+1)(4k−11)=0⇒k=−12,114
Checking the values of k, we get
When k=−12, we get
tanB=0⇒B=nπ
This is not possible for any angle of triangle
When k=114, we get
tanB=134, tanC=6
Hence, k=114⇒[k]=2