CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

In a triangle $$ABC$$, the line joining the circumcentre to the incentre is parallel to $$BC$$, then evaluate $$\cos { B } +\cos { C } $$


Solution

In $$\triangle OBL, \displaystyle \cos { A } =\frac { OL }{ OB } =\frac { r }{ R } $$
$$\Rightarrow R\cos { A } =r$$
$$\displaystyle \Rightarrow R\cos { A } =4R\sin { \frac { A }{ 2 }  } \sin { \frac { B }{ 2 }  } \sin { \frac { C }{ 2 }  } $$
$$\displaystyle \Rightarrow \cos { A } =4\sin { \frac { A }{ 2 }  } \sin { \frac { B }{ 2 }  } \sin { \frac { C }{ 2 }  } $$
$$\Rightarrow \cos { A } =\cos { A } +\cos { B } +\cos { C } -1$$
$$\Rightarrow 0=\cos { B } +\cos { C } -1\Rightarrow \cos { B } +\cos { C } =1$$

404632_145505_ans.PNG

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image