In a triangle ABC, the median to the side BC is of length 1√11−6√3 & it divides the angle A into angles of 30∘ & 45∘Find the length of the side BC
Open in App
Solution
Applying m−n theorem we get 2cotθ=cot30−cot45∘⇒tanθ=√3+1 ...(i) Now sinC=sin(π4+θ)=1√2(sinθ+cosθ) Using (i) we get sinC=√3+2√2√5+2√3 Now applying sine law in ΔADC we get ADsinC=DCsin45∘ ∴DC=1√11−6√3×√2√5+2√3√3+2⋅1√2=√5+2√3√11−6√3√7+4√3=1 Hence, DC=BD=1⇒BC=2