By m-n theorem, cotθ=√3−12
or tanθ=2√3−1
∴sinθ=2√(8−2√3,cosθ=√3−1√(8−2√3)
Now by sine rule on △ADC in which
AD=1√(11−6√3) and DC=a2, we have
a/2sin450=ADsin[π(θ+450)]=AD1√2(sinθ+cosθ)
a2=ADsinθ+cosθ=√8−2√3√3+1.1√(11−6√3)
=√8−2√3√(4+2√3)√(11−6√3)=√8−2√3√(8−2√3)=1.
∴a=2∵(√3+1)2=4+2√3