The correct option is B 4√3 Δ
Let the sides a,b,c
3(a2b2c2)1/3≤a2+b2+c2≤4R2(sin2A+sin2B+sin2C)3(a2b2c2)1/3≤a2+b2+c2≤9R23(a2b2c2)1/3≤a2+b2+c2≤9(a2b2c216Δ2)
The minimum value will occur when,
3(a2b2c2)1/3=9(a2b2c216Δ2)⇒3(abc)2/3=9(abc)216Δ2⇒abc=(16Δ23)3/4
So the minimum value is,
a2+b2+c2=3(abc)2/3⇒a2+b2+c2=3(16Δ23)1/2⇒a2+b2+c2=4√3Δ