In a △ABC, the sides AB and AC have been produced to D and E. Bisectors of ∠CBD and ∠BCE meet at O. If ∠A=640, then ∠BOC is:
A
520
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
580
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
260
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1120
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B580 Given: OB and OC bisect ext.∠B and ext.∠C, ∠A=64∘. Now, in △OBC, we know, by angle sum property, the sum of angles =180o ⟹∠OBC+∠OCB+∠BOC=180o ⟹12(ext.∠B+ext.∠C)+∠BOC=180o ...(OB and OC bisect exterior angles) ⟹12(180o−∠ABC+180o−∠ACB)+∠BOC=180o ⟹12(360o−(∠ABC+∠ACB))+∠BOC=180o ⟹12(360o−(180o−∠A))+∠BOC=180o (Angle sum property) ⟹12(180o+∠A)+∠BOC=180o ⟹∠BOC=180o−90o−12(64o) ⟹∠BOC=58∘.