wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a triangle ABC,the value of sinA+sinB+sinC is :


A

4sinA2sinB2sinC2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

4cosA2cosB2cosC2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

4cosA2sinB2sinC2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

4cosA2sinB2cosC2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

4cosA2cosB2cosC2


Finding the value of sinA+sinB+sinC in a triangle.

In any triangle, the sum of all the interior angles is always 180°.

Therefore, In the triangle ABC, A+B+C=180°

Now, solving for sinA+sinB+sinC:

sinA+sinB+sinC=2sinA+B2cosA-B2+sinC=2sinA+B2cosA-B2+2sinC2cosC2=2sin180°-C2cosA-B2+2sinC2cosC2=2cosC2cosA-B2+2sinC2cosC2=2cosC2cosA-B2+sinC2=2cosC2cosA-B2+sin180°-(A+B)2=2cosC2cosA-B2+cosA+B2=4cosC2cosB2cosA2sinA+sinB+sinC=4cosA2cosB2cosC2

Hence, Option (B) is correct.


flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon