In a triangle ABC this statement will always be true.
AB<BC<AC
AB+BC=AC
AB+BC<AC
AB+BC>AC
Sum of any two sides of a triangle is greater than the third side.
So AB+BC>AC
The determinant ∣∣ ∣ ∣∣b2−abb−cbc−acab−a2a−bb2−abbc−acc−aab−a2∣∣ ∣ ∣∣ equals to:
(a) abc(b-c)(c-a)(a-b) (b) (b-c)(c-a)(a-b) (c) (a+b+c)(b-c)(c-a)(a-b) (d) None of these