In a triangle ABC we define x=tanB−C2tanA2 y=tanC−A2tanB2 and z=tanA−B2tanC2 then the value of x+y+z (in terms of x, y, z) is
A
xyz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
- xyz
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2xyz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D - xyz tanB−C2=b−cb+ccotA2, Napier's analogy ∴x1=tanB−C2tanA2=b−cb+c∴1+x1−x=2b2c=bc Similarly 1+y1−y=ca and 1+z1−z=ab ∴(1+x)(1+y)(1+z)(1−x)(1−y)(1−z)=bc.ca.ab=1 or 1+∑x+∑xy+xyz=1−∑x+∑xy−xyz ∴2∑x=−2xyz∴∑x−xyz⇒(b)