The correct options are
A If the angles A,B,C are in A.P., then b2=c2+a2−ca
B sin(B−C)sin(B+C)=b2−c2a2
C ∑b2−c2cosB+cosC=0
D 1+cos(A−B)cosC1+cos(A−C)cosB=a2+b2a2+c2
A,B,C are in A.P.
⇒B=60∘
Now, by cosine rule,
b2=c2+a2−2cacosB
=c2+a2−2ca×12
=c2+a2−2ca
sin(B−C)sin(B+C)
=sin(B−C)sin(B+C)sin2(B+C)
=sin2B−sin2Csin2A
=b2−c2a2 [By sine rule]
b2−c2cosB+cosC
=4R2(sin2B−sin2C)cosB+cosC [By sine rule]
=4R2(cos2C−cos2B)cosB+cosC
=4R2(cosC−cosB)
∴∑b2−c2cosB+cosC
=4R2(cosC−cosB+cosA−cosC+cosB−cosA)
=0
1+cos(A−B)cosC1+cos(A−C)cosB
=1−cos(A−B)cos(A+B)1−cos(A−C)cos(A+C)
=1−(cos2A−cos2B)1−(cos2A−cos2C)
=sin2A+sin2Bsin2A+sin2C
=a2+b2a2+c2