Given, (a−b)2>c2−ab ...(1)
√3x2−4x+√3<0⇒√3x2−3x−x+√3<0⇒(√3x−1)(x−√3)<0⇒1√3<x<√3⇒1√3<tanA,tanB<√3⇒π6<A,B<π3⇒π3<C<2π3⇒−12<cosC<12⇒−12<a2+b2−c22ab<12⇒−ab<a2+b2−c2<ab⇒c2−ab<(a−b)2+2ab<c2+ab⇒c2−3ab<(a−b)2<c2−ab ...(2)
Since, eqn (1) and (2) are contradict each others.
Therefore, no such triangle is possible.