In a triangle ΔABC,AB=12 cm.∠A=45∘,∠B=60∘. The area of triangle ABC will be equal to.
108−36√3 cm2
Draw CD perpendicular to AB
In ΔACD
∠ACD=180−(90∘+45∘)=45∘
Hence, AD=DC, Let it be x
In Triangle ACD, the angles are 45∘,45∘,90∘
⇒sin(45):sin(45):sin(90)
⇒1√2:1√2:1
⇒1:1:√2
45∘45∘90∘1:1:√2↓↓↓ADCDAC↓↓↓xx√2x
In triangle BCD, the angles are 30∘,60∘,90∘
Hence, the corresponding sides can be calculated as
⇒sin(30):sin(60):sin(90)
⇒12:√32:1
⇒1:√3:2
30∘60∘90∘1:√3:2↓↓↓DBCDCB↓↓↓x√3x2x√3
Hence , AB=AD+DB
AB=x+x√3
12=x(1+1√3)
x(√3+1)√3=12
x=12√3(√3+1)×(√3−1)(√3−1)
x=12.√3(√3−1)(3−1)=6(3−√3)=18−6√3
Area of triangle =12×AB×CD
=12×12×(18−6√3)
=6(18−6√3)
=108−36√3 cm2