In a triangle, if cosec (a + b) = sec 3(a + b), then the value of tan 10(a + b) is
1
cosec(a+b)=sec3(a+b)⇒sin(a+b)=cos3(a+b)⇒sin(a+b)=sin[90−3(a+b)]Usingcosx=sin(90−x)⇒a+b=90−3a−3b⇒4(a+b)=90⇒a+b=90/4
Now substitute the value of a + b in tan10 (a + b)
∴tan 10*(90/4) = tan 225∘ = tan 45∘ = 1.