In a triangle if sin2A+sin2B+sin2C=2, then triangle is always -
Right angled triangle
The given equation is -
⇒sin2A+sin2B+sin2C=2⇒(1−cos2A)+(1−cos2B)+(1−cos2C)=2⇒cos2A+cos2B+cos2C=1⇒2cos2A+2cos2B+2cos2C=2⇒−1=(2cos2A−1)+(2cos2B−1)+(2cos2C−1)⇒−1={cos2A+cos2B}+cos2C⇒−1=2cos(A+B)∗cos(A−B)+cos2(A+B)[2C=360−2(A+B)]⇒−1=2cos(A+B)∗cos(A−B)+2cos2(A+B)−1⇒0=2cos(A+B)∗cos(A−B)+2cos2(A+B)
⇒0=2cos(A+B)[cos(A−B)+cos(A+B)]⇒0=cos(A+B)∗cosA∗cosB
Means at least one of the three terms in the right hand side should be equal to 0, so either A + B = 90∘ or A = 90∘, or B = 90∘.
Therefore, it's a right triangle.