In a triangle if tan(A/2),tan(B/2),tan(C/2) are in A.P., then cosA,cosB,cosC are also in A.P.
Open in App
Solution
tan(A/2)−tan(B/2)=tan(B/2)−tan(C/2) or sin{(A−B)/2}cos(A/2)cos(B/2)=sin{(B−C)/2}cos(B/2)cos(C/2) or sin{(A−B)/2}⋅cos(C/2)=sin{(B−C)/2}cos(A/2) or 2sin(A−B2)sin(A+B2)=2sin(B−C2)sin(B+C2) or cosB−cosA=cosC−cosB ∴cosA,cosB,cosC are in A.P.