In a triangle (1−r1r2)(1−r1r3)=2 then the triangle is
right angled
isosceles
equilateral
No such triangle exists
Given, (1−r1r2)(1−r1r3)=2∴(1−s−bs−a)(1−s−cs−a)=2⇒(b−a)(c−a)(s−a)2=2⇒a2=b2+c2
Hence, triangle is a right angled triangle