In a △PQR, if 3 sinP + 4 cosQ = 6 and 4 sinQ + 3 cosP = 1, then the angle R is equal to:
We have,
3sinP+4cosQ=6......(1)
4sinQ+3cosP=1.......(2)
On squaring and adding both side and we get,
(3sinP+4cosQ)2+(4sinQ+3cosP)2=36+1
⇒9sin2P+16cos2Q+24sinPcosQ+16sin2Q+9cos2P+24sinQcosP=37
⇒9sin2P+9cos2P+16sin2Q+16cos2Q+24sinPcosQ+24sinQcosP=37
⇒9(sin2P+cos2P)+16(sin2Q+cos2Q)+24(sinPcosQ+sinQcosP)=37
⇒9×1+16×1+24sin(P+Q)=37
⇒25+24sin(P+Q)=37
⇒24sin(P+Q)=37−25
⇒24sin(P+Q)=12
⇒sin(P+Q)=1224
⇒sin(P+Q)=12
⇒sin(P+Q)=sin300
⇒sin(P+Q)=sin1500
Now, (P+Q)=30o,150o
Now P+Q=30o
So,
P+Q+R=180o
30o+R=180o
R=150o=3π4
Hence, this is the answer