In a △PQR, if ∠R=π2 If tan(P2) and tan(Q2) are the roots of ax2+bx+c=0,a≠0 then
tan(P+Q2)=tanP2+tanQ21−tanP2tanQ2 tanP2+tanQ2=−ba tanP2tanQ2=ca tan(π−R2)=−ba1−ca cotR2=bc−a⇒(c−a)cotπ4=b ⇒c=a+b