In a triangle PQR, let a→=QR→, b→=RP→ and c→=PQ→. If a→=3, and b→=4 and a→·c→-b→c→·a→-b→=a→a→+b→. Then the value of a→×b→2 is?
Determining the value of a→×b→2:
Given: a→=QR→, b→=RP→ and c→=PQ→.
We know that, a→+b→+c→=0, From this we get,
a→=-b→+c→c→=-a→+b→
Therefore,
⇒a→·c→-b→c→·a→-b→=a→a→+b→⇒-b→+c→c→-b→-a→+b→a→-b→=a→a→+b→⇒c→2-b→2a→2-b→2=33+4∵a→=3,b→=4⇒c→2-4232-42=37⇒c→2-169-16=37⇒c→2-16-7=37⇒c→2-16=37×-7⇒c→2-16=-3⇒c→2=16-3⇒c→2=13
Now we have a→+b→=-c→
⇒a→+b→2=-c→2⇒a→2+b→2+2a→·b→=c→2⇒9+16+2a→·b→=13∵c→2=13⇒25+2a→·b→=13⇒2a→·b→=13-25⇒2a→·b→=-12⇒a→·b→=-6
Now add the square of the formula
⇒a→·b→2+a→×b→2=a2b2sin2θ+a2b2cos2θ⇒a→·b→2+a→×b→2=a2b2⇒a→·b→2+a→×b→2=a2·b2⇒a→×b→2+62=32×42⇒a→×b→2+36=9×16⇒a→×b→2=144-36⇒a→×b→2=108
Hence, the value of a→×b→2 is 108.