wiz-icon
MyQuestionIcon
MyQuestionIcon
8
You visited us 8 times! Enjoying our articles? Unlock Full Access!
Question

In a triangle PQR, let a=QR, b=RP and c=PQ. If a=3, and b=4 and a·c-bc·a-b=aa+b. Then the value of a×b2 is?


Open in App
Solution

Determining the value of a×b2:

Given: a=QR, b=RP and c=PQ.

We know that, a+b+c=0, From this we get,

a=-b+cc=-a+b

Therefore,

a·c-bc·a-b=aa+b-b+cc-b-a+ba-b=aa+bc2-b2a2-b2=33+4a=3,b=4c2-4232-42=37c2-169-16=37c2-16-7=37c2-16=37×-7c2-16=-3c2=16-3c2=13

Now we have a+b=-c

a+b2=-c2a2+b2+2a·b=c29+16+2a·b=13c2=1325+2a·b=132a·b=13-252a·b=-12a·b=-6

Now add the square of the formula

a·b2+a×b2=a2b2sin2θ+a2b2cos2θa·b2+a×b2=a2b2a·b2+a×b2=a2·b2a×b2+62=32×42a×b2+36=9×16a×b2=144-36a×b2=108

Hence, the value of a×b2 is 108.


flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relation between AM, GM and HM
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon