In a triangle PQR, R = π2 If tan P2and tanQ2are the roots of the equation \( ax^2\) +bx+c=0 (a≠0), then:
a+b=c
b+c=a
a+c=b
b=c
∠P+∠Q=π2
P2+Q2=π4
tan(P2+Q2)=tanπ4
⇒ 1 = tanP2+tanQ21−tanP2tanQ2
tanP2+tanQ2=−ba
tanP2tanQ2=ca
⇒ 1 = −ba1−ca=−ba−c