In a triangle â–³ABC,3sinA+4cosB=6 and 4sinB+3cosA=1, then the angle C is
A
150o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
45o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
60o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
30o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D30o Given 3sinA+4cosB=6....(i) 4sinB+3cosA=1....(ii) By squaring Eqs. (i) and (ii) we get 9sin2A+16cos2B+24sinA.cosB=36....(iii) 16sin2B+9cos2A+24sinB.cosA=1....(iv) By adding Eqs (iii) and (iv) we get 9(sin2A+cos2A)+16(sin2B+cos2A)+24(sinA.cosB+cosA.sinB)=37 ⇒9+16+24sin(A+B)=37[∵sin2θ+cos2θ=1] ⇒24sin(A+B)=12 ⇒sin(A+B)=12 ∴A+B=30oor150o But, A+B=30o is not possible Because sum of two angles of a triangle is greater than third angle ∴A+B=150o ∵ Sum of angle of a triangle =180o ∴A+B+C=180o ⇒C=180o−(A+B)=180o−150o=30o