In a triangle XYZ, let x,y,z be the lengths of sides opposite to the angles X,Y,Z, respectively, and 2s=x+y+z. If s−x4=s−y3=s−z2 and area of incircle of the triangle XYZ is8π3, then
A
The radius of circumcircle of the triangle XYZ is 356√6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sin2(X+Y2)=35
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sinX2sinY2sinZ2=435
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Area of the triangle XYZ is 6√6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D Area of the triangle XYZ is 6√6
s−x4=s−y3=s−z2=k s–x=4k ... (i) s–y=3k ... (ii) s–z=2k ... (iii) 3s–(x+y+z)=9k 3s–2s=9k s=9k
From (i), (ii), (iii) x=5k,y=6k,z=7k
Area of incircle = πr2=8π3 r2=83 ⇒Δ2s2=83 ⇒s(s−x)(s−y)(s−z)s2=83 (9k)(4k)(3k)(2k)81k2=83 k2=1 ⇒k=±1
Now side length, x=5,y=6,z=7 and s=9
(1) Area of triangle XYZ=√s(s−x)(s−y)(s−z) =√9⋅4⋅3⋅2 =3⋅2√6 =6√6
(2) Radius of circumcircle of ΔXYZ R=xyz4Δ=5⋅6⋅74⋅6√6=354√6
(3) sinX2⋅sinY2⋅sinZ2=√(s−x)(s−z)xz(s−y)(s−z)yz(s−x)(s−y)xy =(s−x)(s−y)(s−z)xyz =4⋅3⋅25⋅6⋅7 =435
(4) sin2(X+Y2)=cos2Z2=s(s−z)xy=9⋅25⋅6=35.