Let the units digit be X
And tens digits be Y
Number=10Y+X
Units digit exceeds tens digit by 2
Hence X−Y=2
X=2+Y⟹(i)
And (10Y+X)(X+Y)=144
10XY+10Y2+X2+XY=144
11XY+10Y2+X2=144⟹(ii)
Substitute X from (i) in (ii) and get
11(2+Y)Y+10Y2+(2+Y)2=144
22Y+11Y2+10Y2+4+4Y+Y2=144
22X+11X2+40+40X+10X2=144
22Y2+26Y−140=0
11Y2+13Y−70=0
11Y2+35Y−22Y−70=0
Y(11Y+35)−2(11Y+35)=0
(y−2)(11Y+35)=0
Now either (Y−2)=0
Y=2
Or 11Y+35=0
Y=−3511
Since Y is non negative
Hence Y=2 and X=2+Y=2+2=4
Hence required number =4