In∆ABC,AB=ACand∠B=50°. Then ∠C is equal to
40°
50°
80°
130°
Explanation of the correct option:
Given: AB=AC,∠B=50°
So, the triangle is an isosceles triangle because the two sides are equal in length.
SinceAB=AC⇒∠B=∠C⇒∠C=50°
Therefore (B) is the correct option.
Name the property where a,bandc
a+b=b+a:
ABCD is a quadrilateral in which$ \mathrm{AD}=\mathrm{BC}$ and $ \angle \mathrm{DAB}=\angle \mathrm{CBA}$ .
Prove that $ \left(\mathrm{i}\right)△\mathrm{ABD}\cong △\mathrm{BAC}$
$ \left(\mathrm{ii}\right) \mathrm{BD} = \mathrm{AC}$
$ \left(\mathrm{iii}\right) \angle \mathrm{ABD}=\angle \mathrm{BAC}$