wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question


In △ABC, AD is a median and AL ⊥ BC.
Prove that
i AC2=AD2+BC.DL+BC22ii AB2=AD2-BC.DL+BC22iii AB2+AC2=2AD2-14BC2

Open in App
Solution

(a)
In right triangle ALD
Using Pythagoras theorem, we have
AL2 = AD2 − DL2 .....(1)
Again, In right triangle ACL
Using Pythagoras theorem, we have
AC2=AL2+LC2=AD2-DL2+DL+DC2 Using1=AD2-DL2+DL+BC22 AD is a median=AD2-DL2+DL2+BC22+BC.DLAC2=AD2+BC.DL+BC22 .....(2)
(b)
In right triangle ALD
Using Pythagoras theorem, we have
AL2 = AD2 − DL2 .....(3)
Again, In right triangle ABL
Using Pythagoras theorem, we have
AB2=AL2+LB2=AD2-DL2+LB2 Using3=AD2-DL2+BD-DL2=AD2-DL2+12BC-DL2=AD2-DL2+BC22-BC.DL+DL2AB2=AD2-BC.DL+BC22 .....(4)
(c) Adding (2) and (4), we get

AC2+AB2=AD2+BC.DL+BC22 +AD2-BC.DL+BC22=2AD2+BC24+BC24=2AD2+12BC2

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Bulls Eye View of Geometry
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon