The correct option is B Isoceles triangle
For the given triangle, we have
cosA+sinB=2cosB+sinB⇒(cosA+sinB)(cosB+sinB) =2⇒cosAcosB+cosAsinB +sinBcosB+sinBsinB =2
Now, we know the expressions:cos(A−B)=cosAcosB +sinAsinBsin(A+B)=sinAcosB +sinBcosA
Now, using these two expressions, we get
cosAcosB+cosAsinB +sinBcosB+sinBsinB =2⇒cos(A−B)+sin(A+B)=2
Now, the above expression is possible only if cos(A−B)=1 andsin(A+B)=1
Since, both sine and cosine ranges from -1 to 1.
Thus, cos(A−B)=1⇒A−B=0 ⇒A=B
Also, sin(A+B)=1⇒A+B=π/2
Now, substituting A=B in the above equation, we get
A=B=π4.
Thus, the triangle ABC is an isoceles triangle.