wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

In ∆ABC, prove that:

b sec B+c sec Ctan B+tan C=c sec C+a sec Atan C+tan A=a sec A+b sec Btan A+tan B

Open in App
Solution

Let ABC be any triangle.

Suppose asinA=bsinB=csinC=k

Now,
bsecB+csecCtanB+tanC=bcosB+ccosCsinBcosB+sinCcosC =bcosC+ccosBsinBcosC+sinCcosB =ksinBcosC+ksinCcosBsinBcosC+sinCcosB = ksinBcosC+sinCcosBsinBcosC+sinCcosB=k ...1
Also,
csecC+asecAtanC+tanA=ccosC+acosAsinCcosC+sinAcosA =ccosA+acosCsinCcosA+sinAcosC =ksinCcosA+ksinAcosCsinCcosA+sinAcosC =ksinCcosA+sinAcosCsinCcosA+sinAcosC =k ...2andasecA+bsecBtanA+tanB=acosA+bcosBsinAcosA+sinBcosB =acosB+bcosAsinAcosB+sinBcosA =ksinAcosB+sinBcosAsinAcosB+sinBcosA =k ...3

From (1), (2) and (3), we get:

b sec B+c sec Ctan B+tan C=c sec C+a sec Atan C+tan A=a sec A+b sec Btan A+tan B

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon