wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ∆ABC, prove the following:
c2-a2+b2 tan A=a2-b2+c2 tan B=b2-c2+a2 tan C

Open in App
Solution

We know that cosA=b2+c2-a22bc,sinAa=sinBb=sinCc=k

So,c2-a2+b2tanA=c2-a2+b2sinAcosA =c2-a2+b2sinA2bcb2+c2-a2 =2bcsinA =2kabc ...1a2-b2+c2tanB=a2-b2+c2sinBcosB =a2-b2+c2sinB2aca2+c2-b2 =2acsinB =2kabc ...2b2-a2+c2tanC=b2-a2+c2sinCcosC =b2-c2+a2sinC2aba2+b2-c2 =2absinC =2kabc ....3

From (1), (2) and (3), we get:
c2-a2+b2 tan A=a2-b2+c2 tan B=b2-c2+a2 tan C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Values of Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon