We know that cosA=b2+c2-a22bc,sinAa=sinBb=sinCc=k So,c2-a2+b2tanA=c2-a2+b2sinAcosA =c2-a2+b2sinA2bcb2+c2-a2 =2bcsinA =2kabc ...1a2-b2+c2tanB=a2-b2+c2sinBcosB =a2-b2+c2sinB2aca2+c2-b2 =2acsinB =2kabc ...2b2-a2+c2tanC=b2-a2+c2sinCcosC =b2-c2+a2sinC2aba2+b2-c2 =2absinC =2kabc ....3 From (1), (2) and (3), we get: c2-a2+b2 tan A=a2-b2+c2 tan B=b2-c2+a2 tan C
(c2−a2+b2) tan A=(a2−b2+c2) tan B=(b2−c2+a2) tan C
In any Δ ABC, prove that
(b2−c2)a2 sin 2A+(c2−a2)b2 sin 2B+(a2−b2)c2 sin 2C=0