Consider: c2+b2-a2tanA=c2+b2-a2sinA2bcc2+b2-a2=2bcsinA=2kabc ∵sinAa=sinBb=sinCc=k ....(1) Similarly, a2+c2-b2tanB=a2+c2-b2sinB2aca2+c2-b2=2acsinB=2kabc ...(2) and a2+b2-c2tanC=a2+b2-c2sinC2aba2+b2-c2=2absinC=2kabc ...(3) From (1), (2) and (3), we get: c2+b2-a2 tan A=a2+c2-b2 tan B=a2+b2-c2 tan C Hence proved.
In any Δ ABC, prove that
(b2−c2)a2 sin 2A+(c2−a2)b2 sin 2B+(a2−b2)c2 sin 2C=0
In any ΔABC, prove that
(b2−c2) cot A+(c2−a2) cot B+(A2−B2) cot C=0