wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ∆ABC, prove the following:
c2+b2-a2 tan A=a2+c2-b2 tan B=a2+b2-c2 tan C

Open in App
Solution

Consider:
c2+b2-a2tanA=c2+b2-a2sinA2bcc2+b2-a2=2bcsinA=2kabc sinAa=sinBb=sinCc=k ....(1)
Similarly,

a2+c2-b2tanB=a2+c2-b2sinB2aca2+c2-b2=2acsinB=2kabc ...(2)
and
a2+b2-c2tanC=a2+b2-c2sinC2aba2+b2-c2=2absinC=2kabc ...(3)

From (1), (2) and (3), we get:
c2+b2-a2 tan A=a2+c2-b2 tan B=a2+b2-c2 tan C

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon