wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ∆ABC, prove the following:
sin3 A cos B-C+sin3 B cos C-A+sin3 C cos A-B=3 sin A sin B sin C

Open in App
Solution

Let asinA=bsinB=csinC=k ...1LHS=sin3AcosB-C+sin3BcosC-A+sin3CcosA-B =sin2AsinAcosB-C+sin2BsinBcosC-A+sin2AsinAcosA-B =a2k2sinAcosB-C+b2k2sinBcosC-A+c2k2sinAcosA-B from 1 =12k2a22sinAcosB-C+b22sinBcosC-A+c22sinAcosA-B =12k2a22sinπ-B+CcosB-C+b22sinπ-A+CcosC-A+c22sinπ-B+CcosA-B =12k2a22sinB+CcosB-C+b22sinC+AcosC-A+c22sinA+BcosA-B =12k2a2sin2B+sin2C+b2sin2C+sin2A+c2sin2A+sin2B =12k22a2sinBcosB+sinCcosC+2b2sinCcosC+sinAcosA+2c2sinAcosA+sinBcosB =12k32a2ksinBcosB+ksinCcosC+2b2ksinCcosC+ksinAcosA+2c2ksinAcosA+ksinBcosB =1k3a2bcosB+ccosC+2b2ccosC+acosA+2c2acosA+acosB =1k3abacosB+bcosA+bcbcosC+ccosB+acacosC+ccosA =1k3abc+bca+acb =3abc×1k3 =3sinAsinBsinC×1k3×k3 =3sinAsinBsinC =RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon