In acute angled triangle ABC,r+r1=r2+r3 and ∠B>π3 then
b+2c<2a<2b+2c
b+4c<4a<2b+4c
b+4c<4a<4b+4c
b+3c<3a<3b+3c
r−r2=r3−r1⇒Δs−Δs−b=Δs−c−Δs−a⇒−bs(s−b)=c−a(s−a)(s−c)⇒(s−a)(s−c)s(s−b)=a−cb⇒tan2B2=a−cbBut B2∈(π6,π4)⇒tan2B2∈(13,1)⇒13<a−cb<1⇒b<3a−3c<3b⇒b+3c<3a<3b+3c
In acute angled triangle ABC,r=r2+r3−r1 and ∠B>π3 then exhaustive range of a−cb is