In the given triangle PQR,PR>PQ and PS bisects ∠QPR
In ΔPQR
PR>PQ ....(Given )
∴∠PQR>∠PRQ (Angle opposite to longer side is larger) .... (1)
In ΔPQS and ΔRPS
∠PQR=∠PQS=180°−(∠PSQ+∠QPS)
∠PRQ=∠PRS=180°−(∠PSR+∠RPS)
Given PS is bisector of ∠QPR
Then ∠QPS=∠RPS .... (2)
∠PQR>∠PRQ (As per (1))
∴180°−(∠PSQ+∠QPS)>180°−(∠PSR+∠RPS)
⇒∠PSR>∠PSQ (∵∠QPS=∠RPS)