In an A.P. if SmSn=m4n4 then prove that Tm+1Tn+1=(2m+1)3(2n+1)3.
Open in App
Solution
Given relation implied that m2[2a+(m−1)d]n2[2a+(n−1)d]=m4n4 or a+m−12da+n−12d=m3n3(1) Now TM+1TN+1=a+Mda+Nd where M=m−12;N=n−12 or m=2M+1,n=2N+1 ∴TM+1TN+1=(2M+1)3(2N+1)3 or Tm+1Tn+1=(2m+1)3(2n+1)3.