wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In an A.P. if SmSn=m4n4 then prove that Tm+1Tn+1=(2m+1)3(2n+1)3.

Open in App
Solution

Given relation implied that
m2[2a+(m1)d]n2[2a+(n1)d]=m4n4
or a+m12da+n12d=m3n3 (1)
Now TM+1TN+1=a+Mda+Nd where
M=m12;N=n12
or m=2M+1,n=2N+1
TM+1TN+1=(2M+1)3(2N+1)3 or Tm+1Tn+1=(2m+1)3(2n+1)3.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon